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from everyday decisions to frontier AI
RL is “everywhere”…

Personalized 
Recommendation

Learn from user interactions to personalize 

content in ads, healthcare, and beyond 

Autonomous  
Driving

Learn from driving behavior to optimize 

comfort, safety, and vehicle control

LLMs 
Post-training

Learn from human feedback to improve 

model alignment and reasoning
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from medical history to preference
But…Data is Private…

LLMs 
Post-trainingAutonomous  

Driving

Learn from user interactions to personalize 

content in ads, healthcare, and beyond 

Learn from driving behavior to optimize 

comfort, safety, and vehicle control

Learn from human feedback to improve 

model alignment and reasoning

“I’ve taken the suggested medicine 

for diabetes—feeling good now”

“I usually take local roads because 

I get anxious on highways”

“I choose the second answer because 

it handles my breakup more gently.”

Personalized 
Recommendation



Personalized 
Recommendation

4

from medical history to preference
But…Data is Private…

LLMs 
Post-trainingAutonomous  

Driving

Learn from user interactions to personalize 

content in ads, healthcare, and beyond 

Learn from driving behavior to optimize 

comfort, safety, and vehicle control

Learn from human feedback to improve 

model alignment and reasoning

How to ensure a mathematically rigorous privacy protection?  



Differential Privacy (DP)
The de facto mathematical framework for private data analysis—with rigorous guarantees and real-world deployment*

* Apple, Google, Meta, Microsoft, U.S. Census Bureau



6

a worst-case guarantee

Remove or replace 

Alice’s data

A random mechanism  is said to be -DP if for any adjacent datasets  and  differing in one 
record, any : 


If , it is pure DP; otherwise, approximate DP 

M (ϵ, δ) D D′￼

S ⊆ 𝖱𝖺𝗇𝗀𝖾(M)

δ = 0
ℙ[M(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼) ∈ S] + δ

Definition (DP[DMNS06])

Definition

D′￼

M

D

M(D)

M M(D′￼)

≈(ϵ, δ)

https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf
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a worst-case guarantee
Definition

A random mechanism  is said to be -DP if for any adjacent datasets  and  differing in one 
record, any : 


If , it is pure DP; otherwise, approximate DP 

M (ϵ, δ) D D′￼

S ⊆ 𝖱𝖺𝗇𝗀𝖾(M)

δ = 0
ℙ[M(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼) ∈ S] + δ

Remarks 📝

Definition (DP[DMNS06])

1. Interpretation: Bound the information gain of the adversary after observing the output 


•  , a prior of posterior at most

2. Strong guarantees:  Arbitrary side information and computation power


• adversary knows all datapoints except Alice’s 

3. Various “closeness” measures:  Besides hockey-stick divergence, other divergences:


• Rényi divergence gives Rényi DP[M17], closely related to zCDP [BS16]; Better composition of DP 

ϵ = 1.1,δ = 0 50 % →75 %

https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf
https://arxiv.org/pdf/1702.07476
https://arxiv.org/pdf/1605.02065
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key to the success of DP 
Composition

Suppose  is union of  disjoint datasets and each  is -DP*, then  is -DP  D k Mi (ϵi, δi) M (max
i

ϵi, max
i

δi)

Theorem (Parallel Composition[M09])

M1

D1

M2

D2

Mk

Dk

o1 o2 ok M

D

M(D) = (o1, o2, …, ok)

Adaptive!

*Condition on all previous outputs: o1, …, oi−1

https://css.csail.mit.edu/6.5660/2024/readings/pinq.pdf


9

key to the success of DP 
Composition

M1

D1

Suppose  and each  is -DP*, then  is -DP  D = ∪k
i=1 Di Mi (ϵi, δi) M (∑

i

ϵi, ∑
i

δi)

Theorem (Basic Sequential Composition[DMNS06])

M2

D2

Mk

Dk

o1 o2 ok M

D

M(D) = (o1, o2, …, ok)

Adaptive!

*Condition on all previous outputs: o1, …, oi−1

Each  can be differentDi

 -DP mechanisms gives -DPk ϵ kϵ
Implies post-processing 

Once private, always private, if no further touch

https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf
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key to the success of DP 
Composition

M1

D1

M2

D2

Mk

Dk

o1 o2 ok M

D

M(D) = (o1, o2, …, ok)

*Hold for approximate DP with additional  in kδ δ′￼

Suppose  and each  is -DP*, then  is -DP for any  with   D = ∪k
i=1 Di Mi ϵ M (ϵ′￼, δ′￼) δ′￼ ≥ 0

Theorem (Advanced Sequential Composition[DRV10])

ϵ′￼ = ϵ 2k ln(1/δ′￼) + kϵ(eϵ − 1)

For small , now  rather than , if approximate DPϵ k k

Each  can be differentDi Adaptive!

https://guyrothblum.wordpress.com/wp-content/uploads/2014/11/drv10.pdf


from additive noise to sampling and back
Basic DP Mechanisms

*Holds for ϵ ≤ 1

Given a data analytical function , the corresponding private mechanism isf : 𝒳n → Rd

DP from additive noise

M(D) = f(D)+Z ⋅ Δ,  with Δ := sup
D∼D′￼

f(D) − f(D′￼)

Laplace mechanism:  and , then  is -DP


Gaussian mechanism: ,  and , then  is -DP*

Z ∼ Lap(1/ϵ)d ∥⋅∥ = ∥⋅∥1 M ϵ
Z ∼ 𝒩(0,σ2)d σ = 2 log(1.25/δ) /ϵ ∥⋅∥ = ∥⋅∥2 M (ϵ, δ)

Applications ⚙ Private mean estimation of  bounded unit -norm vectors n L2 {xi}n
i=1

• Laplace mechanism: , pure DP with MSE of 


• Gaussian mechanism: , approximate DP with MSE of 

Δ = d /n O(d2/(n2ϵ2))

Δ = 1/n O(d log(1/δ)/(n2ϵ2))

f(D) =
1
n ∑

i

xi

 separation

Both rates are optimal, see my blog

≈ d

11

https://xingyuzhou.org/blog/notes/Private-mean-estimation-(I)


from additive noise to sampling and back
Basic DP Mechanisms

DP from sampling — Exponential Mechanism [MT07]

12

Remarks 📝
1. Utility: The sampled  satisfies that with prob. 





2. Gumbel max trick: finite , return  with Gumbel noise  Exp. Mechanism


3. Recover Laplace mechanism:  A proper choice of score function leads back to Lap. mechanism

h 1 − β

q(D, h) ≥ max
h′￼∈ℋ

q(D, h′￼) −
2Δ log( |ℋ | /β)

ε

ℋ arg max
h∈{1,…,|ℋ|}

(q(D, h) + Zh) →

This satisfies -DPϵ

ℙ(h) ∝ exp(ϵ ⋅ q(D, h)/(2Δ)),  with Δ := sup
D∼D′￼,h∈ℋ

|q(D, h) − q(D′￼, h) |

Given a score function  and , sample an outcome  with probabilityq : 𝒳n × ℋ → R D h ∈ ℋ

https://ieeexplore.ieee.org/document/4389483


who do you trust? 
Trust Models

13

Central model [DMNS06] 
Server is trusted, private after server

xi ∈ {−1,1}

x1

x2

…
…

xn
D = {xi}n

i=1

✅

Distributed model [CSUZZ19] (e.g., shuffle) 
Third-party is trusted, private before server

Send locally private  yi
e.g., flip  w.p. xi 1/(1 + eϵ)

x1

x2

…
…

xn

❌
D = {yi}n

i=1

Local model [KLNR08] 
Server is untrusted, private after user

Privacy amplification by 

1/ n

Send locally private  yi

x1

x2

…
…

xn

e.g., flip  w.p. xi 1/(1 + eϵ)

❌
D = {yi}n

i=1✅

https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf
https://arxiv.org/pdf/1808.01394
https://arxiv.org/pdf/0803.0924


Summary
the DP journey so far…

1. What’s DP and its guarantees


 - Limits what adversaries can learn—no matter what they already know 

2. Composition 


 - Privacy loss adds up—but smart composition controls the damage 

3. Basic DP mechanisms


 - Add noise or sample wisely—closely related to each other  

4. Three trust models


 - Who do you trust—server, third-party, or no one at all?
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Summary
the DP journey so far…

1. What’s DP and its guarantees


 - Limits what adversaries can learn—no matter what they already know 

2. Composition 


 - Privacy loss adds up—but smart composition controls the damage 

3. Basic DP mechanisms


 - Add noise or sample wisely—closely related to each other  

4. Three trust models


 - Who do you trust—server, third-party, or no one at all?

How to bridge DP with reinforcement learning?  



Challenges
from privacy definition to algorithmic design



Challenge: Privacy definition
what’s privacy unit and view of adv.?

 is -DP if for any  and  differing in one record, any : 
M (ϵ, δ) D D′￼ S ⊆ 𝖱𝖺𝗇𝗀𝖾(M)
ℙ[M(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼) ∈ S] + δ

Standard DP in Central Model

DP Supervised Learning 

• Privacy unit: differ by one offline example

• Adversary view: final model

DP Reinforcement Learning

D = {(xi, yi)}n
i=1

(x1, y1)

(xn, yn)

…

 (📜, 💊); 👍xi : yi :

• Privacy unit: data point is dynamic!

• Adversary view: online interaction & final policy

 online dataDt

 (📜, ?); ?xi : yi :

17



Challenge: Algorithm design

DP Supervised Learning 

One universal algorithm (almost) 
SGD dominates in both convex and non-convex cases

DP Reinforcement Learning

18

(x1, y1)

(xn, yn)

… DP-SGD … DP-???

Fragmented landscape (almost*) 
Different problems have different algorithms

* Some recent unified framework for RL, e.g., [FKQR21]

which one to privatize and how?

https://arxiv.org/pdf/2112.13487


Recent Advances
from a theoretical perspective



Roadmap*

20 * A (biased) selection of works :-)

Private Offline RLPrivate Online RL 

Offline LLM alignment (e.g., DPO)MABs Linear bandits Contextual bandits Model-based RL Model-free RL

T1: Doubling & Forgetting T2: Tree-based Mechanism T3: Fixed-size Batching T4: Exp. Mechanism & Randomized Response 

4 key tools



Roadmap*

21 * A (biased) selection of works :-)

Private Offline RLPrivate Online RL 

Offline LLM alignment (e.g., DPO)MABs Linear bandits Contextual bandits Model-based RL Model-free RL

T1: Doubling & Forgetting T2: Tree-based Mechanism T3: Fixed-size Batching T4: Exp. Mechanism & Randomized Response 



MAB setting

Stochastic Multi-Armed Bandit (MAB)

22
*Technically, it is pseudo-regret

𝔼[R(T )] := Tμ(a*) − 𝔼[∑ rt]

at

rt

User at t

👍

Successive Elimination (SE) [EDMM06]

Repeat till end


1. Play each arm in  once


2. Update  by removing “bad” arms


(via count  and empirical estimate )

𝒜
𝒜
Na ̂μa

Active set 𝒜

There are  arms. For each :

• An arm  is selected


• Reward  where each  has support  with mean  (where )


Goal: Minimize expected regret*

K t = 1,…, T
at ∈ [K]
rt(at) ∼ Pat

Pa [0,1] μa a* = arg max
a

μ(a)

https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf


Definition (DP in MAB, first attempt)

DP in MAB

23

A common but unsatisfying def. 

An MAB algorithm  is -DP if for all  and , differing in one reward, 
and for all output action sequence ,  

M (ϵ, δ) D = (r1, …, rT) D′￼ = (r′￼1, …, r′￼T)
S

ℙ[M(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼) ∈ S] + δ

Limitations ‼

1. Not well-defined dataset: impossible to have such a neighboring 


• Changing the reward at time  affects all future ones, due to online learning


2. Improper privacy unit: the true privacy target is the user at any time 


• whether that person has participated in this process

• what’s their preference over all actions, rather than just the recommended one.

D, D′￼

t
t

23



Definition (DP in MAB)

DP in MAB
A better one 

An MAB algorithm  is -DP if for all  and , differing in one user, 
and for all output action sequence ,  

M (ϵ, δ) D = (u1, …, uT) D′￼ = (u′￼1, …, u′￼T)
S

ℙ[M(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼) ∈ S] + δ

at

rt

User at t

👍

(a1, …, aT)

2424

a′￼t

r′￼t

User at t

👍

(a′￼1, …, a′￼T)≈

See more discussion on this definition on my blog

https://xingyuzhou.org/blog/notes/Differential-privacy-for-bandits-and-RL


Algorithm: DP-SE

25

Tool1: Doubling & Forgetting

25

Non-private one 

DP-Successive Elimination (SE) [SS19][CZ23]

Repeat till end


1. Play each arm in  for a doubling # times 


(i.e.,  for each batch )


2. Update  by removing “bad” arms


(via count  and empirical estimate  using data only 

in the latest batch + Laplace noise, i.e., forgetting)

𝒜
2l l = 1,2,…
𝒜
Na ̂μa

Private one 

Successive Elimination (SE) [EDMM06]

Repeat till end


1. Play each arm in  once


2. Update  by removing “bad” arms


(via count  and empirical estimate )

𝒜
𝒜
Na ̂μa

Active set 𝒜 Active set 𝒜

[CZ*23] Distributed Differential Privacy in Multi-Armed Bandits, ICLR’23 (Equal Contributions)

(total rewards) / (total counts)

i.e., accumulated statistics

https://arxiv.org/pdf/1905.09383
https://openreview.net/pdf?id=cw8FeirkIfU
https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf


Theorem (DP-SE) [SS19][CZ*23]

Theoretical Guarantees

26

MAB

26 [CZ*23] Distributed Differential Privacy in Multi-Armed Bandits, ICLR’23 (Equal Contributions)

DP-SE satisfies -DP and achieves the following regret bound (ϵ, δ)

𝔼[R(T )] = O ∑
a∈[K]:Δa>0

log T
Δa

+
K log T

ε

This bound is optimal

Proof intuition 💡

• Privacy: Laplace mech. + Parallel composition + Post-processing

• Regret: No noise accumulation + doubling trick

Additive privacy cost

Last elimination point that survives Eliminated

N1 N2N0 = 2N1= N0+1

https://arxiv.org/pdf/1905.09383
https://openreview.net/pdf?id=cw8FeirkIfU


Further Applications
Tool1: Doubling & Forgetting

[LZJ22] Distributed Linear Bandits with Differential Privacy🏅  Best Student Paper, WiOPT’22 & IEEE TNSE

1. Extend to UCB?


- Yes! Essentially the same analysis via Phased-UCB, see [LS20, ex. 7.5 ] [AB22] 

2. Extend to other trust models as well as variants?


- Yes! Local, distributed DP models and discrete noise, see [CZ*23]  

3. Extend to linear bandits?


- Yes! Also, local and distributed DP models, see [LZJ22] 

- Intuition: Phase-elimination is a perfect fit for doubling & forgetting

https://arxiv.org/pdf/2207.05827v2
https://tor-lattimore.com/downloads/book/book.pdf
https://arxiv.org/pdf/2209.02570


Connections 
back to private supervised learning (SL)…

Privacy unit One example/item 

(from one user) One user

Output 
(adversary view) Final model weights All  actionsT

Both can be fixed in advance &

implicitly assume “uniqueness” 

DP-SGD/GD actually ensures 

stronger protection

Where to add noise Gradient Reward Both are adaptively determined

How to bound privacy loss

Private SL 
(e.g., DP-SGD/GD)

Private MAB 
(e.g., DP-SE) Remark

Subsampling or full batch

(relies on offline nature)

Parallel composition

(relies on doubling trick) The most important difference



Roadmap*

29 * A (biased) selection of works :-)

Private Offline RLPrivate Online RL 

Offline LLM alignment (e.g., DPO)MABs Linear bandits Contextual bandits Model-based RL Model-free RL

T1: Doubling & Forgetting T2: Tree-based Mechanism T3: Fixed-size Batching T4: Exp. Mechanism & Randomized Response 

✅



Roadmap*

30 * A (biased) selection of works :-)

Private Offline RLPrivate Online RL 

Offline LLM alignment (e.g., DPO)MABs Linear bandits Contextual bandits Model-based RL Model-free RL

T1: Doubling & Forgetting T2: Tree-based Mechanism T3: Fixed-size Batching T4: Exp. Mechanism & Randomized Response 



Setting

Contextual Bandits

For each :

•  A user with context  arrives

• An action  is recommended 

• Reward  is observed, where  for some unknown function 


Goal: Minimize regret

t = 1,…, T
ct

at ∈ 𝒜
rt 𝔼[rt |ct, at] = f ⋆(ct, at) f ⋆

31
*There are recent general-purpose algorithms for general function classes  

LinUCB for linear [APS11]f ⋆(c, a) = ϕ(c, a)⊤θ⋆

R(T ) :=
T

∑
t=1

f ⋆(ct, π⋆(ct)) −
T

∑
t=1

f ⋆(ct, at)

at

rt

User at t

ct

Define: 


For :


1. Estimate :  ,  

         (  (“covariance”),  (“bias”) ) 

2.  UCB:  

xt := ϕ(ct, at)
t = 1,…, T

θ⋆ ̂θt = V−1
t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsrs

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

Sufficient statistics

add context for personalization

https://sites.ualberta.ca/~szepesva/papers/linear-bandits-NeurIPS2011.pdf


Definition (DP for CB)

DP in Contextual Bandits

32

A challenge emerges…

Limitations ‼

1. Contradiction to personalization: DP requires outputting the “same” action for two different users

• In CB, changing one user with a different context should give a personalized action


2. Linear regret lower bound: DP in fact leads to a linear regret lower bound [SS18]

• Make the problem not interesting at all

• Need a new relaxed definition 

32

ℙ[M(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼) ∈ S] + δ

A contextual bandit algorithm  is -DP if for all  and , differing in 
one user, and for all output action sequence ,  

M (ϵ, δ) D = (u1, …, uT) D′￼ = (u′￼1, …, u′￼T)
S

https://arxiv.org/pdf/1810.00068


Definition (Joint DP in CB [VBKZ20])

JDP in Contextual Bandits
A more proper one 

A contextual bandit algorithm  is -JDP if for all  and , differing 
in one user at any , and for all output action except round  sequence ,  

M (ϵ, δ) D = (u1, …, uT) D′￼ = (u′￼1, …, u′￼T)
t t S

ℙ[M−t(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼)−t ∈ S] + δ

(a1, …, at−1, at+1, …, aT)

at

rt

User at t

ct

3333

≈

a′￼t

r′￼t

User at t

c′￼t

(a′￼1, …, a′￼t−1, a′￼t+1, …, a′￼T)

https://arxiv.org/pdf/2009.09052


JDP in Contextual Bandits
A more proper one 

A contextual bandit algorithm  is -JDP if for all  and , differing 
in one user at any , and for all output action except round  sequence ,  

M (ϵ, δ) D = (u1, …, uT) D′￼ = (u′￼1, …, u′￼T)
t t S

ℙ[M−t(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼)−t ∈ S] + δ

Definition (Joint DP in CB [VBKZ20])

34

Remarks 📝

1. Both past and future actions: not simply future action sequence as in [SS18] 
• This prevents colluding from future and past users


2. Reduction to DP mechanism: via so-called billboard lemma [HHR+16]  

• An Algorithm is JDP if it leverages (i) user ’s own information and (ii) private signal computed via DP mechanism


• In CB, (i) is context  and (ii) is all other statistics so far

t
ct

https://arxiv.org/pdf/2009.09052
https://arxiv.org/pdf/1810.00068
https://arxiv.org/pdf/1311.2828


Algorithm: Private-LinUCB

35

Tool2: Tree-based Mechanism

35

Non-private one 

LinUCB for linear [APS11]f ⋆(c, a) = ϕ(c, a)⊤θ⋆

Define: 


For :


1. Estimate :  ,  

         (  (“covariance”),  (“bias”) ) 

2.  UCB:  

xt := ϕ(ct, at)
t = 1,…, T

θ⋆ ̂θt = V−1
t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsrs

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

Sufficient statistics

All we need is to privatize these prefix sum statistics!

Differential Privacy 201

1. Recall Gaussian mechanism for private sum of  bounded vectors


      i.e.,  is the private sum of  under -DP


, 


Intuition: change one data, the sum changes in , bounded by  

l2

s̃
k

∑
s=1

γs (ϵ, δ)

s̃ =
k

∑
s=1

γs + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

l2 L
2. Continual private sum (essential for private online learning)


 i.e., stream of data , compute  for all , i.e.,  
γ1, …, γK s̃k k
k

∑
s=1

γs

Simple Approach I: add noise ( ) to each 


— -DP (by post-processing) 

— total noise is  (❗)


Simple Approach II: add noise ( ) to each prefix sum


— noise is  for all 


— -DP (by advanced composition of DP) 

— i.e., for -DP, the final total noise needs to be  (❗)

≈ 1/ϵ2 γs

(ϵ, δ)
K /ϵ2

≈ 1/ϵ2

1/ϵ2 k
≈ ( Kϵ, δ′￼)

(ϵ, δ) K /ϵ2

https://sites.ualberta.ca/~szepesva/papers/linear-bandits-NeurIPS2011.pdf


Algorithm: Private-LinUCB

36

Tool2: Tree-based Mechanism

36

Non-private one 

LinUCB for linear [APS11]f ⋆(c, a) = ϕ(c, a)⊤θ⋆

Define: 


For :


1. Estimate :  ,  

         (  (“covariance”),  (“bias”) ) 

2.  UCB:  

xt := ϕ(ct, at)
t = 1,…, T

θ⋆ ̂θt = V−1
t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsrs

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

Sufficient statistics

All we need is to privatize these prefix sum statistics!

Differential Privacy 201

Continual private sum (essential for private online learning)


 i.e., a stream of data , compute  — priv. sum of  
γ1, …, γK s̃ t

k

∑
s=1

γs

Tree-based algorithm [CSS11]: add noise to partial sum 
∑ [i, j]

Key observations: 
— each data affects at most  p-sums (  noise each) 
— each prefix sum needs at most  partial-sums (p-sums)

— total noise is still  ( ✅ ignore log factor )

O(log K) Õ (1/ϵ2)
O(log K)

Õ (1/ϵ2)

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

All the three mechanisms can be viewed as 

matrix factorization mechanism, see my blog

https://sites.ualberta.ca/~szepesva/papers/linear-bandits-NeurIPS2011.pdf
https://xingyuzhou.org/blog/notes/DP-FTRL-and-matrix-factorization-(I)


Algorithm: Private-LinUCB

37

Tool2: Tree-based Mechanism

37

Non-private one 

LinUCB for linear [APS11]f ⋆(c, a) = ϕ(c, a)⊤θ⋆

Define: 


For :


1. Estimate :  ,  

         (  (“covariance”),  (“bias”) ) 

2.  UCB:  

xt := ϕ(ct, at)
t = 1,…, T

θ⋆ ̂θt = V−1
t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsrs

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

Sufficient statistics

All we need is to privatize these prefix sum statistics!

Private-LinUCB for linear [SS18]f ⋆(c, a) = ϕ(c, a)⊤θ⋆

Define: 


For :


1. Estimate :  ,  

         (  are private prefix sum for , obtained from Tree-based Mech.) 

2.  UCB:  

xt := ϕ(ct, at)

t = 1,…, T
θ⋆ ̂θt = Ṽ −1

t Ũ t

Ṽ t, Ũ t Vt, Ut

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
Ṽ −1

t

Private one 

https://sites.ualberta.ca/~szepesva/papers/linear-bandits-NeurIPS2011.pdf
https://arxiv.org/pdf/1810.00068


Theorem (Private-LinUCB & Lazy Version) [SS18][CZ*22]

Theoretical Guarantees

38

Contextual bandits

Private-LinUCB satisfies -JDP and achieves the following regret bound w.h.p.(ϵ, δ)

38 [CZ*22] Shuffle Private Linear Contextual Bandits, ICML’22 (Equal Contributions)

     with      R(T ) = Õ (d T) + Õ (d3/4 Tσ) σ =
log(1/δ)

ϵ

The same bound can be achieved with only  update via batchingO( T)

Proof idea💡

• Privacy: Tree-based mechanism + Billboard lemma

• Regret: Total noise in the prefix-sum is log order, by tree-based mechanism

https://arxiv.org/pdf/1810.00068
https://proceedings.mlr.press/v162/chowdhury22a/chowdhury22a.pdf


Discussion

1. Is previous bound optimal (e.g., additional )?


- the current lower bound is an additional term of [HZZ22] 


- under additional stochastic context condition: the best upper bound is [CLRS25]


- for general adversary context: it is still open, even without computation constraint


2. How about local DP model?


- the first result is an additional [ZCHLW20], but lower bound is [LHG21]


- for general (adversary) context, an exponential-time algorithm gives [CR25]


- under additional stochastic context condition: a computation-efficient algorithm gives [CLRS25]  

3. How about shuffle DP model?


- the first result is  with only one shuffler [CZ*22]


- it is improved to , but with  concurrent shufflers [TKMS23]

T/ϵ

d /ϵ

d3/2/ϵ

(dT )3/4/ ϵ d2T /ϵ

d3T /ϵ

d5T /ϵ

T3/5/ ϵ

T/ϵ log T

Tightness & other trust models

[CZ*22] Shuffle Private Linear Contextual Bandits, ICML’22 (Equal Contributions)

https://proceedings.mlr.press/v162/he22e/he22e.pdf
https://arxiv.org/pdf/2502.13115
https://arxiv.org/pdf/2006.00701
https://arxiv.org/pdf/2110.10133
https://arxiv.org/pdf/2501.14928
https://arxiv.org/pdf/2502.13115
https://arxiv.org/pdf/2301.12535
https://proceedings.mlr.press/v162/chowdhury22a/chowdhury22a.pdf


Further Applications

1. How about applying it to MAB with UCB?


- It will not yield optimal problem-dependent bound due to additional log factor


2. Extend to model-based RL?


- Yes! For tabular MDP, see [VBKZ20], [CZ*21]  

- Yes! For linear-mixture MDP, see [Zhou22] [LGLP21]


(The key is to find prefix-sum sufficient statistics in each setting)


3. Extend to model-free RL?


-  Unfortunately, no.


-  We no longer have the prefix-sum structure, leading to our next tool

Tool2: Tree-based Mechanism

[CZ*21] Differentially Private Regret Minimization in Episodic Markov Decision Processes, AAAI’21 (oral)
[Zhou22] Differentially Private Reinforcement Learning with Linear Function Approximation, SIGMETRICS’22

https://arxiv.org/pdf/2009.09052
https://arxiv.org/pdf/2112.01585
https://arxiv.org/pdf/2112.10599
https://arxiv.org/pdf/2201.07052
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MDP & Linear MDP

Model-free RL: Linear MDP
An MDP is given by :


•  is the state space,  is the action space,  horizon length,  transition prob. and  reward


• Value function:  and Q-function: 


Goal: Online interact for  episodes, each with  steps to minimize the regret

M(𝒮, 𝒜, H, ℙ, r)
𝒮 𝒜 H ℙh(sh+1 |sh, ah) rh(sh, ah)

Vπ
h (s) := 𝔼[

H

∑
h′￼=h

rh′￼(sh′￼, π(sh′￼, h′￼)) |sh = s] Qπ
h (s, a) = rh(s, a) + 𝔼x′￼∼ℙh(⋅∣s,a)Vπ

h+1(s′￼)

K H

43

R(K) :=
K

∑
k=1

V⋆
1 (sk

1) − Vπk
1 (sk

1)

Linear MDP: Both transition and reward are linear mappings

ℙh( ⋅ ∣ s, a) = ⟨ϕ(s, a), μh( ⋅ )⟩, rh(s, a) = ⟨ϕ(s, a), θh⟩

Q-function will also be linear!

User at k
h = 1

h = H

…

(Can also view as sending entire trajectory in the and, given fixed policy ) πk

43

LSVI-UCB[JYWJ19]

Vk
h =

k−1

∑
τ=1

xτ
h(xτ

h)⊤ + λ ⋅ I Uk
h =

k−1

∑
τ=1

xτ
h [rh(sτ

h, aτ
h) + Vk

h+1(s
τ
h+1)]

Define xτ
h := ϕ(sτ

h, aτ
h)

For :k ∈ [K], h ∈ [H]
1. Estimation: wk

h = (Vk
h)−1Uk

h

2. UCB: Qk
h(s, a) = ϕ(s, a)⊤ŵk

h + β ϕ(s, a)
(Vk

h)−1
, ∀s, a

3. Greedy:  using latest Q-function

https://arxiv.org/pdf/1907.05388


Definition (Joint DP in RL[VBKZ20])

JDP in RL
lift from one-step to  stepH

An RL algorithm  is -JDP if for all  and , differing in one user at 
any , and for all output event except episode ,  ,  

M (ϵ, δ) D = (u1, …, uT) D′￼ = (u′￼1, …, u′￼T)
t k S ⊆ 𝒜H×K−1

ℙ[M−k(D) ∈ S] ≤ eε ⋅ ℙ[M(D′￼)−k ∈ S] + δ

User at k
h = 1

h = H

…

(a1, …, ak−1, ak+1, …, aK)
ak = (ak

1, …, ak
H)

4444

≈

User at k
h = 1

h = H

…

(a′￼1, …, a′￼k−1, a′￼k+1, …, a′￼K)
a′￼k = (a′￼k

1 , …, a′￼k
H)

https://arxiv.org/pdf/2009.09052


Algorithm: Private-LSVI-UCB
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Tool3: Fixed-size Batching 

45

Non-private one 

Private-LSVI-UCB [LGLP21]

Private one 

LSVI-UCB [JYWJ19] Define xτ
h := ϕ(sτ

h, aτ
h)

Vk
h =

k−1

∑
τ=1

xτ
h(xτ

h)⊤ + λ ⋅ I Uk
h =

k−1

∑
τ=1

xτ
h [rh(sτ

h, aτ
h) + Vk

h+1(s
τ
h+1)]

For :k ∈ [K], h ∈ [H]
1. Estimation: wk

h = (Vk
h)−1Uk

h

2. UCB: Qk
h(s, a) = ϕ(s, a)⊤ŵk

h + β ϕ(s, a)
(Vk

h)−1
, ∀s, a

3. Greedy:  using latest Q-function

prefix-sum, ✅  It is not, due to  !Vk
 is obtained via tree-based mechanismṼ k

h

Ũ k
h =

k−1

∑
τ=1

xτ
h [rh(sτ

h, aτ
h) + Vk

h+1(s
τ
h+1)]+𝒩(0,σ2I)

For :k ∈ [K], h ∈ [H]

1. Estimation: wk
h = ( Ṽ k

h)
−1 Ũ k

h

2. UCB: Qk
h(s, a) = ϕ(s, a)⊤ŵk

h + β ϕ(s, a)
(Vk

h)−1
, ∀s, a

3. Greedy:  using latest Q-function

If  do update:k % B = 0
Batching update with noise 

https://arxiv.org/pdf/2112.01585
https://arxiv.org/pdf/1907.05388


Theorem (Private-LSVI-UCB) [LGLP21]

Theoretical Guarantees

46

Linear MDP

Private-LSVI-UCB with  satisfies -JDP and attains regret w.h.p.σ2 ≈δ
K

ϵ2B
(ϵ, δ)

46 [CZ*22] Shuffle Private Linear Contextual Bandits, ICML’22 (Equal Contributions)

   R(T ) ≲δ poly(H, d)( K+K3/5/ϵ2/5)
Proof idea💡

• Privacy: Tree-based mechanism + Gaussian mechanism + Advanced composition


- The “dominated” term is , giving the noise  above via advanced composition over  updates


• Regret: A generic regret bound under batching with noise, see [CZ*22]


In our case,  above, giving regret with optimal choice of 

Ũ k σ2 T/B

σ2
0 = σ2 B

R(T ) ≲ poly(H, d)(B + d K + σ0K) where  is the total noise in the sufficient statisticsσ0

https://arxiv.org/pdf/2112.01585
https://proceedings.mlr.press/v162/chowdhury22a/chowdhury22a.pdf


Can we do better?

• In the non-private, one can use determinant-trick for adaptive lazy update


- the total number of update is now log order


- which seems to reduce the privacy cost due to composition


• However, in the private case, tricky things happen


   - the adaptive condition also needs privacy protection


- which invalidates standard determinant trick


- this leads to proof gaps in several existing works

Adaptive lazy update fails…



Further Applications

1. Useful for shuffle model


- leveraging it, we give the first bound under shuffle DP, see [CZ*22]


- essentially based on the previous generic regret bound under batching with noise


2. Useful for federated contextual bandits (CB)


- leveraging it, we give the first correct regret bound for private federated CB


- again, the issues are due to adaptive lazy update 

3. Useful for RL with general function approximations


-  our ongoing work:-)

Tool3: Fixed-size Batching

[CZ*22] Shuffle Private Linear Contextual Bandits, ICML’22 (Equal Contributions)

https://proceedings.mlr.press/v162/chowdhury22a/chowdhury22a.pdf
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LLM Alignment
Align outputs with human values

Two Popular Paradigms in LLM Alignment (figure from Rafailov et al. 2023)

https://arxiv.org/pdf/2305.18290


Formal Setting
Given an offline preference  dataset 


•  , i.i.d and , 

•  


•  satisfies BT-preference model: 


Goal: Minimize sub-optimality gap: , with 

D𝗉𝗋𝖾𝖿 = {xi, a0
i , a1

i , yi}n
i=1

xi ∼ ρ a0
i ∼ π𝗋𝖾𝖿( ⋅ |xi) a1

i ∼ π𝗋𝖾𝖿( ⋅ |xi)
yi ∈ {0,1} ∼ 𝖡𝖾𝗋(P(a1

i ≻ a0
i |xi))

P(a1
i ≻ a0

i |xi) P(a1
i ≻ a0

i |xi) =
exp(r⋆(xi, a1

i ))
exp(r⋆(xi, a1

i )) + exp(r⋆(xi, a0
i ))

SubOpt( ̂π, π⋆) := J(π⋆) − J( ̂π) J(π) := 𝔼x∼ρ,y∼π(⋅|x)[r⋆(x, y)]

52

LLM Alignment
Align outputs with human values

Direct Preference Optimization (DPO)

Solve: ̂π𝖣𝖯𝖮 = arg max
π∈Π ∑

(x,a+,a−)∈D𝗉𝗋𝖾𝖿

log [σ (βh𝖣𝖯𝖮(x, a+, a−))]

- 


-  is sigmoid


-  (preferred one)


-  is some regularization parameter

h𝖣𝖯𝖮(x, a+, a−) := log
π(a+ ∣ x)

π𝗋𝖾𝖿(a+ ∣ x)
− log

π(a− ∣ x)
π𝗋𝖾𝖿(a− ∣ x)

σ(z)
a+ = ay

β

-Preference Optimization ( PO) [HZXLSKF25]χ2 χ

Solve: ̂πχ𝖯𝖮 = arg max
π∈Π ∑

(x,a+,a−)∈D𝗉𝗋𝖾𝖿

log [σ (βhχ𝖯𝖮(x, a+, a−))]

- 


-

hχ𝖯𝖮(x, a+, a−) := ϕ (
π(a+ ∣ x)

π𝗋𝖾𝖿(a+ ∣ x) ) − ϕ ( π(a− ∣ x)
π𝗋𝖾𝖿(a− ∣ x) )

ϕ(u) := u + log u

This additional term introduces pessimism 
— key for single-policy concentrability 

https://arxiv.org/pdf/2407.13399


Definition (Central DP)

Definition (Randomized Response & LDP)

Privacy in LLM Alignment
Local & Central Models

The true preference label  is passed through local randomized response , generating  with





This satisfies local -label-DP  

y ℛ ỹ
ℙ[ỹ = y] =

eε

1 + eε
and ℙ[ỹ ≠ y] =

1
1 + eε

ϵ

An offline alignment  is -DP if for all , 

 


holds for any pair , differing in one sample  

𝒜 (ϵ, δ) S
ℙ[𝒜(Dpref) ∈ S] ≤ eε ⋅ ℙ[𝒜(D′￼pref) ∈ S] + δ

(D𝗉𝗋𝖾𝖿, D′￼𝗉𝗋𝖾𝖿) (xi, a0
i , a1

i , yi)

Essentially standard DP definition 

Essentially standard LDP definition applies to label
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Algorithm: Square POχ
from log-loss to square loss

-Preference Optimization ( PO)χ2 χ

Solve: ̂πχ𝖯𝖮 = arg max
π∈Π ∑

(x,a+,a−)∈D𝗉𝗋𝖾𝖿

log [σ (βhχ𝖯𝖮(x, a+, a−))]

- 


-

hχ𝖯𝖮(x, a+, a−) := ϕ (
π(a+ ∣ x)

π𝗋𝖾𝖿(a+ ∣ x) ) − ϕ ( π(a− ∣ x)
π𝗋𝖾𝖿(a− ∣ x) )

ϕ(u) := u + log u

Non-private one Private one in local model 

Square POχ

Solve: ̂π ← arg min
π∈Π ∑

i∈[n]
[2σ (βhχPO,i) − 1 − c(ε)zi]

2

- 


-  and 

hχPO,i := ϕ ( π(a1
i ∣ xi)

πref(a1
i ∣ xi) ) − ϕ ( π(a0

i ∣ xi)
πref(a0

i ∣ xi) )
c(ϵ) :=

eϵ + 1
eϵ − 1

zi = 2ỹi − 1

View it as a debiased loss
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Algorithm: Square POχ
from log-loss to square loss

Private one in local model 

Square POχ

Solve: ̂π ← arg min
π∈Π ∑

i∈[n]
[2σ (βhχPO,i) − 1 − c(ε)zi]

2

- 


-  and 

hχPO,i := ϕ ( π(a1
i ∣ xi)

πref(a1
i ∣ xi) ) − ϕ ( π(a0

i ∣ xi)
πref(a0

i ∣ xi) )
c(ϵ) :=

eϵ + 1
eϵ − 1

zi = 2ỹi − 1

Private one in central model 

Square POχ
Sample  from  using exponential mechanism with probability
̂π Π

P(π) ∝ exp (−
ε
8

⋅ L(π; D𝗉𝗋𝖾𝖿))

- L(π; Dpref) := ∑
i∈[n]

[2σ (βhχPO,i) − 1 − zi]
2



Theorem (Square PO)[ZWWO25]χ

Theoretical Guarantees
offline alignment

Under local model, whp , Square PO attains 


, where 


Under central model, whp ,  Square PO attains


1 − β χ
SubOpt( ̂π, π⋆) ≲ κ(π⋆) ⋅ (c(ε)

log( |Π | /β)
n ) c(ϵ) :=

eϵ + 1
eϵ − 1

1 − β χ
SubOpt( ̂π, π⋆) ≲ κ(π⋆) ⋅ ((1 + 1/ ϵ) log( |Π | /β)

n )

[ZWWO] SquareχPO: Differentially Private and Robust χ2-Preference Optimization in Offline Direct Alignment, ICML’25

Proof idea💡

• Local model: Debiased estimator under randomized response +  generalization of LS under local privacy

• Central model: Exponential mechanism + generalization of LS under central privacy

Optimal scaling

Single-policy concentrability, i.e., only depends on 

the comparator policy

https://arxiv.org/pdf/2505.21395


Further Applications

1. What if there exists label corruption besides privacy?


- Yes! Square PO will still work under additional Huber corruption


- For local privacy, the order of corruption and privacy protection leads to separation result


2. What if we get rid of BT-preference model?


- Yes! A variant of Square PO will still work under general preference model 


3. What if it is strong adaptive corruption?


- Yes! The same debiased loss can handle interplay between privacy and corruption [ZWO25]


- But, it is currently only for linear function approximations 

4. What if we choose RLHF rather than DPO?


-  Yes! a unified analysis of RLHF and DPO under linear function approximation [ZWO25] 

χ

χ

Tool4: Exp. Mechanism & Randomized Response

[ZWO25] A Unified Theoretical Analysis of Private and Robust Offline Alignment: from RLHF to DPO, ICML’25 (Spotlight)

https://arxiv.org/pdf/2505.15694


Summary
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Key idea

Parallel composition

 noise 


Doubling trick
O(1)

Key idea

Binary tree

 noise


Prefix sum
O(log T )

Key idea

Advanced composition

 noise


Batching regret bound
O(poly(T ))

Key idea

Debiased loss 

Exp. Mechanism


LS generalization error bound



Open Problems



Open & Important Problems

1. How about private RL with general function approximations?


- The non-private case has advanced quickly recently


- Given the lack of prefix-sum, the first approach is fixed-size batching


- Can we reduce to private supervised and online learning?


2. What’s the complexity measure for private RL learnability?


- For non-private RL, there are several recent measures, e.g., DEC, GEC, SEC


- For private PAC learning, we know it is Littlestone dimension (hence online learning)


- Very recently, [CR25] shows that one measure is fractional covering number, but exponential gap remains 

3. How about private RL for LLM (e.g., alignment and reasoning)?


-  how to define privacy?


-  Outcome reward vs. per-step reward


4. What’s the interplay of privacy with robustness and fairness in private RL?

a biased selection

https://arxiv.org/pdf/2501.14928
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